과대 적합 과대 적합은 제합된 훈련 데이터 세트가 지나치게 특화되어 새로운 데이터에 대한 오차가 매우 커지는 현상이다. 모델의 개개변수 수가 많거나 훈련 데이터 세트의 양이 부족한 경우에 발생한다. 훈련 데이터는 실제 데이터의 부분 집합이라서 실제 데이터의 모든 특성을 가지고 있지 않을 수 있다. 과대 적합의 발생 원인은 실제 데이터에서 편향된 부분만을 가지고 있거나 오류가 포함된 값을 가지고 있을 경우 발생할 수 있다. 과대 적합 방지하기 과대 적합을 방지하기 위해 데이터 세트 증강, 모델 복잡도 감소, 가중치 규제, 드롭아웃 방법을 적용한다. ① 데이터 증강 모델은 훈련데이터 세트의 양이 적을 경우, 해당 데이터의 특정 패턴이나 노이즈까지 분석되어 과대 적합 현상이 발생할 확률이 높으므로 충분한 데이..